SEUNG WHAN CHUNG

Computational Scientist & Center for Applied Scientific Computing & Lawrence Livermore National Laboratory chung28@llnl.gov & chung-research.com & linkedin

EDUCATION

University of Illinois at Urbana-ChampaignJanuary 2017 - August 2021Ph. D in Theoretical and Applied MechanicsGPA: 4.0/4.0University of Illinois at Urbana-ChampaignAugust 2014 - December 2016M. S in Theoretical and Applied MechanicsGPA: 3.88/4.0Seoul National UniversityMarch 2008 - February 2014B. S. in Mechanical and Aerospace Engineering (Summa cum laude)GPA: 3.96/4.3

RESEARCH

• Lawrence Livermore National Laboratory April 2024 - Present Computational Scientist Livermore, CA • Lawrence Livermore National Laboratory January 2023 - March 2024 Postdoctoral Staff Member Livermore, CA · Developed a scalable reduced order model with discontinuous Galerkin domain decomposition · Orchestrated the development of pylibROM, python interface for the library of reduced order modeling · Advised and mentored three student interns (Ping-Hsuan Tsai, Seung-Won Suh, Axel Larsson) • University of Texas at Austin September 2021 - December 2022 Postdoctoral Fellow (with Prof. R. Moser, Prof. L. Raja, Dr. T. Oliver) Austin, TX · Uncertainty quantification of electron-argon collision cross sections via Bayesian inference · Physics-based reduced-modeling of inductively-coupled argon plasma torch · Developed a discontinuous-Galerkin HPC solver for large-scale non-equilibrium plasma simulations • University of Illinois at Urbana-Champaign January 2015 - August 2021 Graduate Researcher (with Prof. Jonathan Freund) Urbana, IL · Developed multi-point penalty-based optimization framework for chaotic turbulent flows. Implemented and validated turbulence statistics and sound radiation of a compressible Mach-1.3 jet. • Sandia National Laboratories January 2017 - May 2017 Student Intern (with Dr. Stephen D. Bond, Dr. Eric C. Cyr) Albuquerque, NM · Developed a novel regular gradient computing method for chaotic particle plasma simulations. · Demonstrated gradient computation for Debye shielding response and sheath edge formation.

SKILLS

Computer Languages	Python, C++, MATLAB, Fortran, pybind11
Parallel Programming	MPI
Simulation Libraries	MFEM, libROM, Gmsh
Scripting	Python, Bash, Flux
Version Control	Git, Docker
Documentation	I₄T _E X, Vi/Vim, Mendeley
Visualization and I/O	PLOT3D, HDF5, Paraview
Presentation	Beamer, Keynote, Adobe Illustrator/Premiere

PUBLICATIONS

S. W. Chung, Y. Choi, P. Roy, T. Roy, T. Moore, T. Lin & S. E. Baker, "Train small, model big: scalable physics simulators via reduced order modeling and domain decomposition," *Computer Methods in Applied Mechanics and Engineering*, In revision, (2023).

S. W. Chung, T. A. Oliver, L. Raja & R. D. Moser, "Characterization of uncertainties in electronargon collision cross sections under statistical principles," *Plasma Sources Science and Technology*, submitted, (2023).

S. W. Chung & J. B. Freund, "An optimization method for chaotic turbulent flows," *Journal of Computational Physics*, 457, (2022).

S. W. Chung, S. D. Bond, E. C. Cyr, & J. B. Freund, "Regular sensitivity computation avoiding chaotic effects in particle-in-cell plasma methods," *Journal of Computational Physics*, **400** (2020).

CONFERENCE TALKS

S. W. Chung, Y. Choi, P. Roy, T. Roy, T. Moore, T. Lin & S. E. Baker, "Scalable physics-guided data-driven component model reduction for Stokes flow," *NeurIPS 2023 Workshop on the Machine Learning and the Physical Sciences* (2023).

P.-H. Tsai, S. W. Chung, D. Ghosh, J. Loffeld, Y. Choi & J. L. Belof, "Accelerating Kinetic Simulations of Electrostatic Plasmas with Reduced-Order Modeling," *NeurIPS 2023 Workshop on the Machine Learning and the Physical Sciences* (2023).

S. W. Suh, S. W. Chung, T. Bremer & Y. Choi, "Accelerating Flow Simulations using Online Dynamic Mode Decomposition," *NeurIPS 2023 Workshop on the Machine Learning and the Physical Sciences* (2023).

S. W. Chung & J. B. Freund. "Finding an optimal flow control with multi-point penalty method," *Bulletin of the American Physical Society*, **67** (2022).

S. W. Chung, T. A. Oliver, L. L. Raja & R. D. Moser, "Characterization of uncertainties in electronargon collision cross sections under statistical principles," *Bulletin of the American Physical Society*, 67 (2022).

S. W. Chung & J. B. Freund. "Multi-point penalty-based optimization for optimal control of chaotic turbulent flow," *Bulletin of the American Physical Society*, **66** (2021).

S. W. Chung & J. B. Freund, "Multi-point augmented Lagrangian optimization for chaotic flows," *SIAM Conference on Computational Science and Engineering*, (2021).

S. W. Chung & J. B. Freund. "Multi-point augmented Lagrangian optimization for chaotic flows," *Bulletin of the American Physical Society*, **65** (2020).

S. W. Chung & J. B. Freund, "Adjoint-based analysis of controllability of turbulent jet noise," *Bulletin* of the American Physical Society, **64** (2019).

S. W. Chung, S. D. Bond, E. C. Cyr, & J. B. Freund, "Regular sensitivity computation avoiding chaotic effects in particle-in-cell plasma methods," *International Conference on Numerical Simulation of Plasmas*, (2019).

S. W. Chung, S. D. Bond, E. C. Cyr, & J. B. Freund, "Sensitivity analysis in particle-in-cell methods," *SIAM Conference on Computational Science and Engineering*, (2019).

S. W. Chung, R. Vishnampet, D. Bodony, & J. B. Freund, "Adjoint-based sensitivity of jet noise to near-nozzle forcing," *Bulletin of the American Physical Society*, **62** (2017).

INVITED TALKS

- S. W. Chung, FEM@LLNL Seminar, Lawrence Livermore National Laboratory, (2024).
- J. B. Freund & S. W. Chung, Lawrence Livermore National Laboratory, (2021).
- S. W. Chung, Fluid Mechanics Seminar, University of Illinois at Urbana-Champaign, (2020).
- S. W. Chung, Sandia National Laboratories, (2017).

JOURNAL REFEREE

Journal of Fluid Mechanics (2022-present)

RESEARCH TOOLS DEVELOPED

 \circ scaleupROM: Scalable Physics-guided Reduced Order Model

https://github.com/LLNL/scaleupROM

- \cdot A data-driven discontinuous Galerkin FEM for general PDE systems based upon MFEM and <code>libROM</code>
- $\cdot\,$ Developed and demonstrated the framework for various physics

\circ pylibROM: python interface for libROM

https://github.com/LLNL/pylibROM

- \cdot Implemented efficient python interface for <code>libROM</code> classes
- \cdot Demonstrated examples of DMD and projection-based ROM for various physics systems

\circ librom: Library for Reduced Order Models

- https://www.librom.net/
- \cdot Implemented and maintained Docker container and CI workflow

• TPS: Torch Plasma Simulator

- with M. Bolinches, T. Oliver, K. Schulz, R. Moser
- \cdot A discontinuous-Galerkin multi-physics application to support a plasma torch prediction, implmented upon a gpu-enabled finite-element library (MFEM)
- \cdot Formulated and implmented a two-temperature non-equilibrium reacting flow solver
- magudi: Dual-consistent, Discrete-exact Adjoint solver for Compressible Flows with R. Vishnampet, J. B. Freund https://github.com/dreamer2368/magudi
- · A Fortran-based compressible flow solver, equipped with discrete-exact adjoint-based gradient.
- · Incorporated a Python-based framework for multi-point penalty-based optimization capability.

\circ torch1d: one-dimensional reduced-model for inductively-coupled plasma torch

with T. Oliver, R. Moser https://github.com/pecos/torch1d

- $\cdot\,$ A Python-based finite-difference solver for a one-dimensional reduced torch model
- $\cdot\,$ Supports low-Mach limit formulation for two-temperature non-equilibrium plasma
- adjoint playground: Adjoint, penalty-based optimization for chaotic flow controls with J. B. Freund Available upon request
- · A MATLAB-based penalty-based optimization framework for various chaotic dynamical systems.
- · Provides a discrete-exact adjoint gradient for semi-implicit Runge-Kutta 4th-order time integrator.
- PASS: Particle Adjoint Sensitivity Sandbox with J. B. Freund
- https://github.com/dreamer2368/PASS

https://github.com/pecos/tps

· A Fortran-based 1D Particle-in-Cell code for plasma kinetics, with adjoint gradient capability

TEACHING

• TAM 210/211: Statics

Teaching Assistant

- $\cdot\,$ Ranked as Excellent in the list of Spring 2020 semester.
- \cdot Conducted discussion sessions (1 time/wk) for 27 students.
- · Prepared in-depth solution procedures.
- \cdot Provided extended office hours: 6 hrs/wk

AWARDS/FELLOWSHIPS

Jeong-Song Fellowship

Jeong-Song Cultural Foundation, Korea

Honor Graduation Award Seoul National University

Presidential Science Fellowship

M. B. Lee, the President of Republic of Korea

GRADUATE COURSES

Instability and Transition

Fluid Mechanics

Inviscid Flow

Viscous Flow

Turbulence

Computational Methods Computational Mechanics Uncertainty Quantification Asymptotic Method Mathematical Methods II

Spring 2020 University of Illinois at Urbana-Champaign

2014 Ranked 5 of 139 (summa cum laude)

> 2008 - 2014 \$40,000

2014 - 2016

\$110,000

Applied Mechanics Control System Theory & Design Solid Mechanics I Combustion Fundamentals Non-Newtonian Fluid Mechanics & Rheology